Maximizing the Transparency Advantage in Optical Networks

Prepared For:
Optical Fiber Communication Conference
March 28, 2003

Contributors:
Joel Gannett (jgannett)
David Shallcross (davids)
Ann Von Lehmen (avl2)
Janet Jackel (jackel)
Tamra Carpenter (tcar)

all@research.telcordia.com
Opening Comments

- Transparency is generally regarded as desirable
- End-to-end transparency for all paths may not always be possible
- Some plausible design paradigms for (mostly) transparent networks:
 - Island-based designs
 - Partition network into “well-behaved” islands with OEO at the “edges”
 - Restrictive design paradigm can make routing easier
 - Restrictive approaches can be wasteful of resources
 - Restrictions may be violated as network evolves over time
 - Unstructured designs
 - OEO nodes are placed “strategically” throughout the network
 - Distributed regeneration (selective regeneration)
 - Every transparent network element may have limited OEO regeneration capabilities to be used *as needed*
Design & Routing Challenges

- **Design challenge:** where do we provide OEO regeneration?
- **Routing challenge:** given a network with OEO regeneration in place, how do we “find” it when needed?
- **Signal impairments** place limits on feasible lightpaths and designs
 - constrain the number of consecutive transparent nodes in a path
 - constrain the distance between OEO nodes in a path
Design Strategy for Unstructured Networks

• Our Assumptions:
 – Nodes are either opaque or transparent
 – Only opaque nodes perform OEO regeneration
 – Transparent nodes are cheaper

• The Problem: select the smallest set of opaque nodes that still provides at least one impairment-feasible path between each pair of nodes

• Two Solutions:
 – a more traditional path improvement heuristic
 – a new approach that formulates and solves a connected dominating set problem on a related graph that assures:
 • each transparent node can reach at least one opaque node
 • opaque nodes can communicate along impairment-feasible routes

• Features:
 – Solutions require very few OEO nodes because we assure the existence of paths without assuring specific paths
 – Solutions assure a general topological feasibility property
 – Approach can be translated into intuitively appealing “design rules”
Routing Algorithms

- Given an OEO placement that does not assure that every path is feasible, a routing algorithm must identify impairment-feasible paths:
 - explicitly monitor consecutive transparent nodes and distance
 - explicitly model the restorative effect of regeneration by OEO
 - guaranteed to find an impairment-feasible path if one exists
- Developed algorithm can be extended to:
 - make “decisions” about whether or not to regenerate at OEO nodes
 - select an impairment-aware path that requires fewest regenerations
 - select an impairment-feasible path that requires fewest added transponders
 - consider constraints on additional metrics

“shortest path”
impairment-feasible path if node limit = 3
Design 1: A Path Improvement Heuristic

Generate a path between each pair of nodes
Place OEO nodes to improve infeasible paths until all paths become feasible
 – In each iteration put OEO capability at location that:
 • makes most new paths feasible
 • improves the most infeasible paths
 • is on the most paths

• Guarantees the feasibility of a specific set of paths
 – Assumes a coupling between design and provisioning
• Typically places more OEOs than needed to guarantee the existence of feasible paths
• Allows flexibility to include “path-specific” properties
Design 2: A New Approach

- View feasibility more generally:
 - Make sure that every transparent node can reach at least one OEO node along an impairment-feasible path
 - Make sure that OEO nodes can communicate with each other along impairment-feasible paths
 - If above are true, a feasible route exists between each pair of nodes

- Feasibility can be represented on a “feasibility graph”

- As long you place OEOs so that every transparent node has a link to an OEO node in the feasibility graph, the first requirement is assured
The Connected Dominating Set Problem

- The Connected Dominating Set Problem:
 - Select a set minimum size set of (OEO) nodes such that every node not in the set has a link to a node in the set...
 - The selected set is a dominating set
 - This assures that each transparent node reaches an OEO node
 - …and such that if we remove all nodes not in the set the remaining graph is connected
 - The selected set is a connected dominating set
 - This assures that OEO nodes can feasibly communicate
Test Network

200 nodes
361 links
Results for 200 Node Network

Transparent node limit = 6
Distance limit = 170km

Path improvement heuristic
Path improvement design with impairment-aware routing
Connected dominating set method
Results for 200 Node Network

Transparent node limit = 3 Distance limit = 80km

Path improvement heuristic
Path improvement design with impairment-aware routing
Connected dominating set method
Concluding Comments

- Assuring that feasible paths exist requires very few OEO sites
 - Feasibility was assured with only 7 OEO nodes
- Extracting the most benefit from sparse regeneration requires impairment-aware routing
 - With “unaware” minimum hop routing, we need 28 OEO sites
 - This assumes *tight coupling* between design and routing
- Sparsely located regeneration will lengthen end-to-end paths
 - The effect will be to increase the number of OEOs performed and the number of required transponders
- The connected dominating set method:
 - provides a basic feasibility guarantee with very few OEO nodes
 - provides a test that can be applied to any placement